Psychology 020 Chapter 2 & Appendix Research Methods & Descriptive Statistics Tues. Sept. 18, 2007

SCIENCE

- Peer-reviewed
- maintain rigorous standards for honesty & accuracy
- Reproducible results demanded
- Failures are searched for and studied closely
- Over time, more is learned about processes under study
- Convinces by evidence or logical reasoning

VS.

PSEUDOSCIENCE

- Not peer-reviewed
- Does not maintain rigorous standards for honesty & accuracy
- Results cannot be verified
- Failures are hidden or excused
- No contributing to knowledge
- Convinces only through 'belief' or 'faith'

THEORIES & HYPOTHESES

- Theories Frameworks for explaining events
 - Formal statements that explain how & why certain events are related

■ Theories are broader than hypotheses

- Hypothesis Tentative explanation/ prediction
- Variable
 - The factor you want to explore
 - Operational Definition
 - How you are specifically going to define/measure your variable
 - Aggression \rightarrow # of punches? # of verbal threats?

Characteristics of a Good Theory

- Incorporate existing fact, Theory is testable, Supported by new research (if not, theory must be reworked), Parsimonious (simplest possible)
- Theories are not necessarily true (Must be validated)

STEPS IN SCIENTIFIC RESEARCH

- Initial observation/question
- Form hypothesis
- Test hypothesis
 - conduct research

- Analyze data
 - Do results support the hypothesis?
- Do further research & build a theory
 - Adjust theory on the basis of new findings

SAMPLES

- a part of a population, or group that a researcher wants to study & make inferences about.
- GOOD SAMPLES:
 - RANDOM each person has equal chances of being in the sample.
 - REPRESENTATIVE same characteristics as general population.

TYPES OF RESEARCH DESIGN

DESCRIPTIVE DESIGN

- SURVEYS interviews & questionnaires
- Types of Surveys
 - o TELEPHONE
 - Fast & efficient
 - Interviewer bias
 - o MAIL
 - Avoids interviewer bias
 - Response rate low
 - PERSONAL INTERVIEW
 - Flexibility (adjust on-the-fly for individual)
 - Costly and interviewer bias
- ALL Descriptive designs have a potential participant response bias.
- Likert Scale: range of choices on a continuum
- Forced-Choice: limited options (True/False)

DATA COLLECTION METHODS

• NATURALISTIC OBSERVATION

- o careful observation and recording of behavior in real-life settings
 - e.g., watching children in daycare
 - Advantages:
 - Behaviour is observed where it typically occurs
 - Disadvantages:
 - Can't establish cause & effect
 - Costly to run
 - Observer interference
- CASE STUDY
- In-depth examination of one person
- Advantages:
 - Enables intensive study of rare phenomena
- Disadvantages:

- Generalizability of the findings is questionable
- Potential researcher bias
- Ethics approval difficult to secure

RESEARCH DESIGN

- 1. Correlations
 - Assess relationships between *naturally occurring variables*
 - You can measure two variables & then compute a correlation to see if there is a meaningful relationship

Addresses questions such as

- How does one behaviour relate to the occurrence of another behaviour?
- Know one behaviour, predict the another?

Advantages: Allows study of relationships that cannot be manipulated or controlled. Disadvantages: Cannot assess cause and effect relationships.

• E.G.: Drownings and ice cream consumption are correlated, but one does not cause the other; something else probably causes both (Summertime)

Correlation Coefficient: See online diagrams; Can be 'strong' or 'weak', 'positive' or 'negative' or 0

2. The Experiment

- Assess cause-effect relationships between 2 or more variables
 - Researcher manipulates one variable
 - Researcher then measures whether this variable produces changes in another variable
 - The researcher attempts to control for other factors that might influence the results
- Why do we care about cause & effect?
 - Do treatments really work?
- Compare experimental group to *control group:* Control for effects of random chance, placebo effects, etc.

THE VARIABLES IN EXPERIMENTS

- Independent Variable (IV)
 - The variable manipulated by the experimenter e.g. Alcohol consumption
 - Popondont Variable (DV)
- Dependent Variable (DV)
 - The variable effected by the independent variable. e.g. Hand-eye coordination

GOOD EXPERIMENTS HAVE:

- Reliability
 - Stability & Consistency
- Internal Validity
 - The IV truly causes the changes in the DV

- External Validity
 - You can generalize your results
- Construct Validity
 - Your measure is truly tapping the variable you want to assess

DIFFERENT WAYS TO DO RESEARCH

- SETTING
 - Field Study
 - Lab
- DATA
 - Self-Report (Surveys, Interviews)
 - Observation
- DESIGN
 - Descriptive
 - Correlational
 - Experimental

APPENDIX:

AFTER DATA COLLECTION: ARE THE FINDINGS MEANINGFUL?

Null Hypothesis Testing

- Assume there are no differences between groups
 - All conditions are the same
- The groups won't all have the EXACT same #s
 - If there are no real differences, how much would they differ just by chance?
- We use statistics to determine what size of a difference is likely by chance
 - If the differences between our groups is larger than what we'd expect by chance → we reject the idea that our conditions are all the same (i.e. reject Null hypothesis)
 - Conclude we have real group differences
 - o (i.e. support the alternative hypothesis)

The Goal is to 'eliminate' the Null Hypothesis (i.e., provide evidence our Alternate Hypothesis is the correct one)

DESCRIPTIVE STATISTICS

CENTRAL TENDENCY

- 1. Mean: average of all scores (sum of scores and divide by N)
- 2. Median: the middle value of a range of scores arrayed lowest to highest
- 3. Mode: the most common score

MEASURES OF VARIABILITY

- 1. Range: how far apart the lowest and highest score are
- 2. Variance: variation of each score from the mean (on average): equation in diagrams
- 3. Standard deviation: square root of the variance

THE NORMAL CURVE (See Diagrams)

- Perfectly symmetrical histogram; mean, median and mode are therefore the same, and at the middle of the graph
- Allows us to see where individual values lie within the distribution
- Percentile rank: describes the % of scores that were lower than a particular score
- Z-score: compares one score to the rest of the distribution (1 Z = 1 Standard Deviation)

* Lecture diagrams for equations and graphs

ETHICS IN RESEARCH

- Research with Humans
- Informed Consent
 - Process
 - Potential risks
 - Freedom to withdraw from study
- Freedom from coercion
- Confidentiality & Anonymity
- Minimize harm/discomfort
- Debriefing
- ETHICAL ISSUES
 - o When should Deception be used?
 - When should "risky" studies be done?

RESEARCH WITH ANIMALS

- Only when necessary (Only when data critical to helping humans)
- Maintain health of animals, in experiments & animal housing
- Humane treatment is essential